Another excellent guest column by Steven Strogatz for the NYT Wild Side blog. The post delves into the mathematical beauty of the natural world, using love as a knowingly over-simplified metaphor.

Although these examples are whimsical, the equations that arise in them are of the far-reaching kind known as differential equations. They represent the most powerful tool humanity has ever created for making sense of the material world. Sir Isaac Newton used them to solve the ancient mystery of planetary motion. In so doing, he unified the heavens and the earth, showing that the same laws of motion applied to both.

In the 300 years since Newton, mankind has come to realize that the laws of physics are always expressed in the language of differential equations. This is true for the equations governing the flow of heat, air and water; for the laws of electricity and magnetism; even for the unfamiliar and often counterintuitive atomic realm where quantum mechanics reigns.

In all cases, the business of theoretical physics boils down to finding the right differential equations and solving them. When Newton discovered this key to the secrets of the universe, he felt it was so precious that he published it only as an anagram in Latin. Loosely translated, it reads: “It is useful to solve differential equations.”